本體論和認(rèn)識(shí)論的區(qū)別(本體論和認(rèn)識(shí)論的區(qū)別例子)
2023-11-22
更新時(shí)間:2023-11-22 14:29:01作者:佚名
簡(jiǎn)單地講就是一個(gè)矩陣可以經(jīng)過(guò)初等行列變換后變成另一個(gè)矩陣,這兩個(gè)矩陣是相似的(不是嚴(yán)格定義),其次,按照書本定義,可以按照上面的說(shuō)法來(lái)理解。
在數(shù)學(xué)中,矩陣(Matrix)是一個(gè)按照長(zhǎng)方陣列排列的復(fù)數(shù)或?qū)崝?shù)集合,最早來(lái)自于方程組的系數(shù)及常數(shù)所構(gòu)成的方陣。這一概念由19世紀(jì)英國(guó)數(shù)學(xué)家凱利首先提出。
矩陣是高等代數(shù)學(xué)中的常見工具,也常見于統(tǒng)計(jì)分析等應(yīng)用數(shù)學(xué)學(xué)科中,在物理學(xué)中,矩陣于電路學(xué)、力學(xué)、光學(xué)和量子物理中都有應(yīng)用,計(jì)算機(jī)科學(xué)中,三維動(dòng)畫制作也需要用到矩陣,矩陣的運(yùn)算是數(shù)值分析領(lǐng)域的重要問(wèn)題。將矩陣分解為簡(jiǎn)單矩陣的組合可以在理論和實(shí)際應(yīng)用上簡(jiǎn)化矩陣的運(yùn)算,對(duì)一些應(yīng)用廣泛而形式特殊的矩陣,例如稀疏矩陣和準(zhǔn)對(duì)角矩陣,有特定的快速運(yùn)算算法,關(guān)于矩陣相關(guān)理論的發(fā)展和應(yīng)用,請(qǐng)參考《矩陣?yán)碚摗?,在天體物理、量子力學(xué)等領(lǐng)域,也會(huì)出現(xiàn)無(wú)窮維的矩陣,是矩陣的一種推廣。